Σχετικά με τους Ανελκυστήρες

Πως λειτουργούν οι Ανελκυστήρες;

Hydraulic Elevators

The concept of an elevator is incredibly simple -- it's just a compartment attached to a lifting system. Tie a piece of rope to a box, and you've got a basic elevator.

Of course, modern passenger and freight elevators are a lot more elaborate than this. They need advanced mechanical systems to handle the substantial weight of the elevator car and its cargo. Additionally, they need control mechanisms so passengers can operate the elevator, and they need safety devices to keep everything running smoothly.

There are two major elevator designs in common use today: hydraulic elevators and roped elevators.

Hydraulic elevator systems lift a car using a hydraulic ram, a fluid-driven piston mounted inside a cylinder. You can see how this system works in the diagram below.

The cylinder is connected to a fluid-pumping system (typically, hydraulic systems like this use oil, but other incompressible fluids would also work). The hydraulic system has three parts:

  • A tank (the fluid reservoir)
  • A pump, powered by an electric motor
  • A valve between the cylinder and the reservoir

The pump forces fluid from the tank into a pipe leading to the cylinder. When the valve is opened, the pressurized fluid will take the path of least resistance and return to the fluid reservoir. But when the valve is closed, the pressurized fluid has nowhere to go except into the cylinder. As the fluid collects in the cylinder, it pushes the piston up, lifting the elevator car.

When the car approaches the correct floor, the control system sends a signal to the electric motor to gradually shut off the pump. With the pump off, there is no more fluid flowing into the cylinder, but the fluid that is already in the cylinder cannot escape (it can't flow backward through the pump, and the valve is still closed). The piston rests on the fluid, and the car stays where it is.

To lower the car, the elevator control system sends a signal to the valve. The valve is operated electrically by a basic solenoid switch (check out How Electromagnets Work for information on solenoids). When the solenoid opens the valve, the fluid that has collected in the cylinder can flow out into the fluid reservoir. The weight of the car and the cargo pushes down on the piston, which drives the fluid into the reservoir. The car gradually descends. To stop the car at a lower floor, the control system closes the valve again.

This system is incredibly simple and highly effective, but it does have some drawbacks. In the next section, we'll look at the main disadvantages of using hydraulics.

Pros and Cons of Hydraulics

The main advantage of hydraulic systems is they can easily multiply the relatively weak force of the pump to generate the stronger force needed to lift the elevator car (see How Hydraulic Machines Work to find out how).

But these systems suffer from two major disadvantages. The main problem is the size of the equipment. In order for the elevator car to be able to reach higher floors, you have to make the piston longer. The cylinder has to be a little bit longer than the piston, of course, since the piston needs to be able to collapse all the way when the car is at the bottom floor. In short, more stories means a longer cylinder.

The problem is that the entire cylinder structure must be buried below the bottom elevator stop. This means you have to dig deeper as you build higher. This is an expensive project with buildings over a few stories tall. To install a hydraulic elevator in a 10-story building, for example, you would need to dig at least nine stories deep! (Some hydraulic elevators don't require quite as much digging. Check out this site to learn about these systems.)

The other disadvantage of hydraulic elevators is that they're fairly inefficient. It takes a lot of energy to raise an elevator car several stories, and in a standard hydraulic elevator, there is no way to store this energy. The energy of position (potential energy) only works to push the fluid back into the reservoir. To raise the elevator car again, the hydraulic system has to generate the energy all over again.

The roped elevator design gets around both of these problems. In the next section, we'll see how this system works.

The Cable System

The most popular elevator design is the roped elevator. In roped elevators, the car is raised and lowered by traction steel ropes rather than pushed from below.

The ropes are attached to the elevator car, and looped around a sheave (3). A sheave is just a pulley with a grooves around the circumference. The sheave grips th­e hoist ropes, so when you rotate the sheave, the ropes move too.

The sheave is connected to an electric motor (2). When the motor turns one way, the sheave raises the elevator; when the motor turns the other way, the sheave lowers the elevator. In gearless elevators, the motor rotates the sheaves directly. In geared elevators, the motor turns a gear train that rotates the sheave. Typically, the sheave, the motor and the control system (1) are all housed in a machine room above the elevator shaft.

The ropes that lift the car are also connected to a counterweight (4), which hangs on the other side of the sheave. The counterweight weighs about the same as the car filled to 40-percent capacity. In other words, when the car is 40 percent full (an average amount), the counterweight and the car are perfectly balanced.

The purpose of this balance is to conserve energy. With equal loads on each side of the sheave, it only takes a little bit of force to tip the balance one way or the other. Basically, the motor only has to overcome friction -- the weight on the other side does most of the work. To put it another way, the balance maintains a near constant potential energy level in the system as a whole. Using up the potential energy in the elevator car (letting it descend to the ground) builds up the potential energy in the weight (the weight rises to the top of the shaft). The same thing happens in reverse when the elevator goes up. The system is just like a see-saw that has an equally heavy kid on each end.

Both the elevator car and the counterweight ride on guide rails (5) along the sides of the elevator shaft. The rails keep the car and counterweight from swaying back and forth, and they also work with the safety system to stop the car in an emergency.

Roped elevators are much more versatile than hydraulic elevators, as well as more efficient. Typically, they also have more safety systems. In the next section, we'll see how these elements work to keep you from plummeting to the ground if something goes wrong.

Safety Systems

In the world of Hollywood action movies, hoist ropes are never far from snapping in two, sending the car and its passengers hurdling down the shaft. In actuality, there is very little chance of this happening. Elevators are built with several redundant safety systems that keep them in position.

The first line of defense is the rope system itself. Each elevator rope is made from several lengths of steel material wound around one another. With this sturdy structure, one rope can support the weight of the elevator car and the counterweight on its own. But elevators are built with multiple ropes (between four and eight, typically). In the unlikely event that one of the ropes snaps, the rest will hold the elevator up.

Even if all of the ropes were to break, or the sheave system were to release them, it is unlikely that an elevator car would fall to the bottom of the shaft. Roped elevator cars have built-in braking systems, or safeties, that grab onto the rail when the car moves too fast.

In the next section, we'll examine a built-in braking system.